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Abstract 
The short-range wakefield between two paralle 

conducting plates generated by a sub-relativistic beam 
bunch has been solved analytically by image charge 
method in time domain. Comparing with traditional 
modal analysis in frequency domain this algorithm 
simplifies mathmatics and reveals great details of physics 
in electromagnetic field generation, propagation, 
reflection and causality. The calculated results have an 
excellent agreement with MAFIA and ABC1 simulations 
in all range of beam velocities. 

1 INTRODUCTION 
Muon ionization cooling ChaMel design for a neutrino 

factory [l] constitutes a sub-relativistic @=0.84) beam 
bunch passing through a beryllium-window pillbox cavity 
(7.82 cm gap, 14.28 cm radius). The beam dynamics 
simulation requires the space charge and wakefield effects 
to be included for the cooling rate calculation. There was 
a fundamental problem how to calculate the Coulomb and 
radiation fields when the bunch is still inside of cavity. In 
reality, the MAFIA in time domain [2] can calculate the 
wake potential. In tradition, the analytics use cavity eigen 
frequencies as a series expansion [3][4] to express the 
point charge wake and then integrate it into Gaussian 
bunch. Figure 1 shows their comparison. The agreement 
in long-range, after the bunch is outside of cavity, is very 
good. But in the short-range, even with 1600 modes in the 
analytics, the discrepancy is obvious. This problem can be 
understood in the following. The source of wakefield is 
beam bunch. After the bunch passing through the cavity, 
the ringing wake can be well dedicated by the cavity 
resonance modes.‘When the bunch is still inside of cavity, 
the wakefield will be dominated by the fields from the 
beam and their reflections in a few paths. To study the 
wakefield in the short range, an image charge method has 
been developed for a flat pillbox cavity, which is easy for 
a point charge to count Coulomb field and field 
reflections relative to the flat walls or mirrors. The 
reflection from the radial wall is far from the short-range. 

2. WAVES IN ONE-PLANE MODEL 
Electromagnetic fields generated by a +q charge with a 
relative velocity B=v/c, moving out from an infinite large, 
perfect-conducting plane at z=O, can be deduced from 
Carron’s note [5] in (r,h z) coordinates: 
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Figure 1: Long-range wake potential from a MAFIA 
calculation and a modal analysis. 

Here _ ,/ s = (@-Z)*+r’/f, s+= @t+z)‘+rffyl and 

?ft=fi.Thecisthespeedoflight. y={m. 
All fields are independent of 4. Each field component 
consists of three terms. Two terms with the step function 
u(ct-3) represent Coulomb field generated by a +q source 
charge moving in +z direction and a -4 image charge 
moving in -z direction. Ihe term with the Delta function 
&ct-33) represents the radiation field. It only rides on the 
spherical wavefront. The wavefront originates at (r, z)=(O, 
0), with a radius of ct, and expends in the speed c. The +q 
charge moves behind the wavefront. Coulomb field 
surrounds the +q, propagates with it, and expands 
between the conducting plane and the wavefront. As the 
particle approaches in relativistic @=l), Coulomb field 
vanishes and only radiation field left. The point charge is 
just riding on the wavefront. As the particle stays in static 
@Xl>, the radiation and magnetic fields disappear. Only 
Coulomb field left, in the form of Coulomb law. 

In principle, a charge particle could not move out or in 
a perfect conductor due to the image charge effect. In 
reality, the conductivity of plate is always finite. Tbe 
charge particle moves with certain energy. If the 
conductor is a thin foil, an energized particle can always 
pass through the conductor. In the mathematics, there is a 



singularity at the interception points. We can avoid this 
problem by excluding these points in the field integration. 

3. WAVES IN TWO-PLANE MODEL 
Before the wavefront reaches the second conductor 

plane, there is no new physics from the one-plane model. 
After that, a two-plane model needs to be developed. We 
added three additional physics points into (l)-(3). 

. A backward radiation when the source charge 
exiting out from the second plane. 

. Multiple field reflections will be superimposed. 
The reflected waves can be represented by infinite 
numbers of image charge fields generated at same 
time but originated at different locations. 

. There is no Coulomb field emitted after the source 
charge left the second plane. 

Use s,- E &t-z-2ig)‘+rz/*j- to replace the s, 

si+ E J(vt + z + 2ig)* + r2 l y2 to replace s+. . Use both 

R,+=,/m and 9ti- = r’+(z-2&-g)* to replace 
R . The order i=O, -1, +l, -2, +2.. . represents the 
wavefront appearance sequence between two conducting 
planes. The g is the gap between two conducting plates. 

Use normalized parameters: E, =we, , E, =ye;, 
4 

In equation (4), the term definition was braced out. A 
MathCAD program was written to show the electric field 
(4) and (5)‘s snap shots in Figure 2. 

s,_ E ys and s,, = y% . We got new field expression: 
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Figure 2: Six electric field vector plots at T=O.75/c, 1.2/c, 
1.5/c, 2.0/c, 2.5/c, 3.5/c. In each time frame, the bottom 
line is beam axis in Z, two sideboards are conducting 
planes in R. All arrow lengths normalize at each grid. 
Only arrow direction represents the field vector. 

4. POINT CHARGE WAKE POTENTIAL 
A witness charge behind or ahead of source charge 

could gain or loss energy due to the wakefield. The pomt 
charge wake potential can be used as a Green’s function. 

Use the normalized parameters again: w =FxJ, Sd. 
g 

The normalized longitudinal wake potential is: 

W8,,(R,S)=jEx(Z,R,T=Z+S)dZ 
Bc 

The norrkhzed transverse wake potential is: 

(7) 

(8) 

The -I-S is defined the distance of witness particle behind 
source particle. 

5. CAUSALITY ISSUE 
The equations (7) and (8) can be done analytically, but the 
algebra is very complicated due to causality issue. The 
causality is when the witness particle starts seeing the 
source particle’s field, and when stops seeing the fields. 
That dictates by the integration limits. When converting 
the variable from time T to distance Z, the integration 
limits will be re-confined by the step functions and the 
Delta functions. A math detail using “Z-S” plot was 
developed to identify these limits or the “open windows” 
seen by the witness particle [6]. The “window 
dimensions” depends on the field type, b and R. Figure 3 
shows one of the window examples. Table 1 summarixs 
these limits and conditions. The condition for “no window 
appears” means we only need a few terms to calculate the 
Coulomb field. Table 2 summaries the radiation 
wavefront positions. Again the “no radiation” condition 
gives the counts of terms for calculating radiation field. 



Figure 3: The “open window” in Z-S plot for /?=0.84, i=Q. 

That is obvious advantage over the modal analysis. 
Another MathCAD program was developed [6]. It 
expands the integrations (7) and (8) analytically with the 
form of conditional branch functions in order to take 
account of the information in Tables 1 and 2. 

Table 1: “Open window” dimensions of witness particle 
to see the source particle’s Coulomb field in Z-S plot. 

Here _ z,-+2p’i-s)++q7 Z,=l-Su’+&~~ 

I 
and X is the root of equation Zr=&. 
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Equation (9) applies both longitudinal and transverse. 

The parameters here are normalized. s’= t, s,’ 32 , 

$=A, x=0. The so is the center of beam bunch. The CT 
cr g 

is the RMS bunch length. The integration (9) can be done 
numerically much faster by MathCAD with known 
analytical W&z, s). 

7. CROSSCHECK WITH MAFIA 
The MAFIA wakefield simulation (both 2D and 3D in 

time domain) was fiit checked with code ABC1 [7] (2D 
and J3=1 beam) for a pillbox cavity. The agreement is very 
good both in short and long ranges. The ABC1 also 
demonstrated the wave reflections similar to Figure 2. We 
then compared the MAFIA simulations with the 
calculations (9) in de-normalized form with a f 50 bunch 
length. We tested in all B and r ranges. The agreement is 
excellent. The Figures 3 shows one of examples. The 
discrepancy happens only when r is near the zero, since 
there is a singularity on axis. The MAFIA always avoids 
the r-0 case. In conclusion, this analytical approach 
reveals great physics details of short-range wakefield and 
benchmarks the MAFIA simulation in this region. 
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Table 2: Radiation wavefront positions. Here 
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6. GAUSSIAN BEAM WAKE POTENTIAL 
Once the Green’s function is known WJ(S), for a 

Gaussian bunch, the normalized wake potential is: 

Figure 3: Longitudinal wake potentials from MAFIA and 
analytics for /3=0.84 with different off-axis distances. The 

dot-line curve is the beam bunch shape. 
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